Publications

86. Larkin, James; Mozden, Sarah; Chyan, Yieu; Zheng, Vivian; Cherukuri, Paul; Tour, James; Ball, Zachary. Capacitively-Coupled Plasma from Laser-Induced Graphene Points to Ozone as the Major Mediator of Antibacterial Activity. ACS Appl. Mater. Interfaces. 2023, 15, 45601-45605. DOI: 10.1021/acsami.3c09216.

85. Larkin, J. O.; Jayanthi, B.; Segatori, L.; Ball, Z. T. Boronic Acid Resin for Selective Immobilization of Canonically Encoded Proteins. Biomacromolecules 2023, 24, 2196–2202. DOI: 10.1021/acs.biomac.3c00096.

84. Stevens, A. M.; Schafer, E. S.; Li, M.; Terrell, M.; Rashid, R.; Paek, H.; Bernhardt, M. B.; Weisnicht, A.; Smith, W. T.; Keogh, N. J.; Alozie, M. C.; Oviedo, H. H.; Gonzalez, A. K.; Ilangovan, T.; Mangubat-Medina, A.; Wang, H.; Jo, E.; Rabik, C. A.; Bocchini, C.; Hilsenbeck, S.; Ball, Z. T.; Cooper, T. M.; Redell, M. S. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers 2023, 15, 1344. DOI: 10.3390/cancers15041344.

83. Swierczynski, M. J.; Ding, Y.; Ball, Z. T. Dual-Boronic Acid Reagents That Combine Dynamic and Covalent Bioconjugation. Bioconjugate Chem. 2022, 33, 2307–2313. DOI: 10.1021/acs.bioconjchem.2c00508.

82. Ding, Y.; Pedersen, S. S.; Lin, A.; Qian, R.; Ball, Z. T. Direct formation and site-selective elaboration of methionine sulfoximine in polypeptides. Chem. Sci. 2022, 13, 14101–14105. DOI: 10.1039/D2SC04220G.

81. Conrad, C.; Yildiz, D.; Cleary, S. J.; Margraf, A.; Cook, L.; Schlomann, U.; Panaretou, B.; Bowser, J. L.; Karmouty-Quintana, H.; Li, J.; Berg, N. K.; Martin, S. C.; Aljohmani, A.; Moussavi-Harami, S. F.; Wang, K. M.; Tian, J. J.; Magnen, M.; Valet, C.; Qiu, L.; Singer, J. P.; Eltzschig, H. K.; Bertrams, W.; Herold, S.; Suttorp, N.; Schmeck, B.; Ball, Z. T.; Zarbock, A.; Looney, M. R.; Bartsch, J. W. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight 2022, 7 DOI: 10.1172/jci.insight.149870.

80. Stevens, A. M.; Schafer, E.; Li, M.; Terrell, M.; Rashid, R.; Paek, H.; Weisnicht, A.; Keogh, N. J.; Alozie, M. C.; Oviedo, H. H.; Gonzalez, A. K.; Mangubat-Medina, A.; Wang, H.; Jo, E.; Rabik, C. A.; Bocchini, C.; Hilsenbeck, S.; Ball, Z. T.; Cooper, T. M.; Redell, M. Combining Atovaquone with Intensive Conventional Chemotherapy for Pediatric Acute Myeloid Leukemia (AML) Is Feasible and Well Tolerated. Blood 2021, 138, 2312. DOI: 10.1182/blood-2021-146057.

79. Wang, H.; Ball, Z. T. A photochemical C=C cleavage process: toward access to backbone N-formyl peptides. Beilstein J. Org. Chem. 2021, 17, 2932–2938. DOI: 10.3762/bjoc.17.202.

78. Wu, K.-L.; Yu, C.; Lee, C.; Zuo, C.; Ball, Z. T.; Xiao, H. Precision Modification of Native Antibodies. Bioconjugate Chem. 2021, 32, 1947–1959. DOI: 10.1021/acs.bioconjchem.1c00342.

77. Mangubat-Medina, A. E.; Ball, Z. T. Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem. Soc. Rev. 2021, 50, 10403–10421. DOI: 10.1039/D0CS01434F.

76. Miller, M. K.; Swierczynski, M. J.; Ding, Y.; Ball, Z. T. Boronic Acid Pairs for Sequential Bioconjugation. Org. Lett. 2021, 23, 5334–5338. DOI: 10.1021/acs.orglett.1c01624.

75. Miller, M. K.; Ball, Z. T. Boronic Acid Reagents for Transition-Metal-Mediated Cross-Coupling with Proteins and Peptides. Isr. J. Chem. 2021, 61, 387–393. DOI: 10.1002/ijch.202100012.

74. Hammers, M. D.; Hodny, M. H.; Bader, T. K.; Mahmoodi, M. M.; Fang, S.; Fenton, A. D.; Nurie, K.; Trial, H. O.; Xu, F.; Healy, A. T.; Ball, Z. T.; Blank, D. A.; Distefano, M. D. Two-photon uncaging of bioactive thiols in live cells at wavelengths above 800 nm. Org. Biomol. Chem. 2021, 19, 2213–2223. DOI: 10.1039/D0OB01986K.

73. One-Step Protein–Polymer Conjugates from Boronic-Acid-Functionalized Polymers. Swierczynski, M. J.; Ball, Z. T. Bioconjugate Chem. 2020, 31, 2494–2498. DOI: 10.1021/acs.bioconjchem.0c00516.

72. Copper-mediated peptide arylation selective for the N-terminus. Miller, M. K.; Wang, H.; Hanaya, K.; Zhang, O.; Berlaga, A.; Ball, Z. T.  Chem. Sci. 2020, 11, 10501–10505. DOI: 10.1039/D0SC02933E

71. Red-shifted backbone N–H photocaging agents. Mangubat-Medina, A. E., Trial, H. O., Vargas, Reyner D., Setegne, M. T., Bader, T. Distefano, M. D., Ball, Z. T. Org. Biomol. Chem. 2020, 18, 5110–5114. DOI: 10.1039/D0OB00923G
70. Targeting STAT3 anti-apoptosis pathways with organic and hybrid organic–inorganic inhibitors. Minus, M. B.; Wang, H.; Munoz, J. O.; Stevens, A. M.; Mangubat-Medina, A. E.; Krueger, M. J.; Liu, W.; Kasembeli, M. M.; Cooper, J. C.; Kolosov, M. I.; et al.  Org. Biomol. Chem. 2020, 18, 3288–3296. DOI: 10.1039/C9OB02682G.
69. Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Del Valle, I.; Webster, T. M.; Cheng, H.-Y.; Thies, J. E.; Kessler, A.; Miller, M. K.; Ball, Z. T.; MacKenzie, K. R.; Masiello, C. A.; Silberg, J. J.; et al. Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Sci Adv 2020, 6, eaax8254. DOI: 10.1126/sciadv.aax8254.
68. Aminoquinoline–Rhodium(II) Conjugates as Src-Family SH3 Ligands. Martin, S. C.; Ball, Z. T. ACS Med. Chem. Lett. 2019, 10, 1380–1385. DOI: 10.1021/acsmedchemlett.9b00309

67. Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Stevens, A. M.; Xiang, M.; Heppler, L. N.; Tošić, I.; Jiang, K.; Munoz, J. O.; Gaikwad, A. S.; Horton, T. M.; Long, X.; Narayanan, P.; et al.  Blood Adv 2019, 3, 4215–4227. 

66. Nickel(II)-Promoted N-H Arylation of Pyroglutamate-Histidine with Arylboronic Acid Reagents. Hanaya, K., Miller, M. K., Ball, Z. T. Org. Lett. 2019, 212445-2448.

65. Rapid Nickel(II)-Promoted Cysteine S-Arylation with Arylboronic Acids. Hanaya, K., Ohata, J., Miller, M. K., Mangubat-Medina, A. E., Swierczynski, M. J., Yang, D., Rosenthal, R. M., Popp, B., Ball, Z. T.  Chem. Commun., 201955, 2841-2844.

64. Protein Substrates for Reaction Discovery: Site-Selective Modification with Boronic Acid Reagents. Ball, Z. T. Acc. Chem. Res.201952, 566–575.

63.  Metal-Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Ohata, J., Martin, S. C., Ball, Z. T. Angew. Chem. Int. Ed., 2019, 58, 6176-6199. 

62. Rhodium at the Chemistry-Biology Interface. Ohata, J., Ball, Z.T. Dalton Trans.2018 47, 14855-14860.

61. A Vinylogous Photocleavage Strategy Allows Direct Photocaging of Backbone Amide Structure. Mangubat-Medina, A. E., Martin, S. C., Hanaya, K., Ball, Z.T.  J. Am. Chem. Soc.2018140, 8401–8404.

60. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan-Lam Coupling.  Ohata, J., Zeng, Y., Segatori, L., Ball, Z.T. Angew. Chem. Int. Ed.201857, 4015–4019.

59. A Three-Component Organometallic Tyrosine Bioconjugation. Ohata, J., Miller, M.K., Mountain, C., Ball, Z.T. Angew. Chem. Int. Ed.201857, 2827–2830.

58. A Hexa-Rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies. Ohata, J., Ball, Z.T. J. Am. Chem. Soc.2017139, 12617–12622.

57. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid. Thomas, E.; Pandey, N.; Knudsen, S.; Ball, Z.T.; Silberg, J. ACS Synth. Biol. 20176, 1572–1583.

56. Ascorbate as a Pro-Oxidant: Mild N-Terminal Modification with Vinylboronic Acids. Ohata, J., Ball, Z.T. Chem. Commun.201653, 1622–1625.

55. Designing Selectivity in Dirhodium Metallopeptide Catalysts for Protein Modification. Martin, S.C.; Vohidov, F.; Wang, H.; Knudsen, S.; Marzec, A.A.; Ball, Z.T. Bioconj. Chem.201628, 659–665.

54. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts. Martin, S.C., Minus, M.B.; Ball, Z.T. In Methods in Enzymology, Vol. 580. Pecoraro, V., Ed.; Academic Press: 2016; 1-19.

53. Assessing the intracellular fate of rhodium(II) complexes. Minus, M.B., Kang, M.K., Knudsen, S.E.; Liu, W., Krueger, M.J.; Redell, M.S.; Ball, Z.T. Chem. Commun.201652, 11685–11688.

52. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper(II). Ohata, J.; Minus, M.B.; Abernathy, M.E.; Ball, Z.T. J. Am. Chem. Soc.2016138, 7472-7475.

51. Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity. Minus, M.B.; Liu, W.; Vohidov, F.; Kasembeli, M.M.; Long, X.; Krueger, M.; Stevens, A.; Kolosov, M.I.; Tweardy, D.J.; Redell, M.S.; Ball, Z.T. Angew. Chem. Int. Ed.201554, 13085-13089.

50. Designing Enzyme-Like Catalysts: A Rhodium(II) Metallopeptide Case Study. Vohidov, F.; Popp, B.V.; Ball, Z.T. In Proceedings of the 24th American Peptide Symposium. Orlando, June 20-25, 2015; Srivastava, V., Yudin, A., Lebl, M., Eds.; American Peptide Society: 2015; 24-26.

49. Convenient Analysis of Protein Modification by Chemical Blotting with Fluorogenic “Click” Reagents.
Ohata, J.; Vohidov, F.; Ball, Z.T. Mol. Biosyst.201511, 2846-2849.

48. Luminogenic Iridium Azide Complexes. Ohata, J.; Vohidov, F.; Aliyan, A.; Huang, K.; Marti, A.A.; Ball, Z.T. Chem. Commun.201551, 15192-15195.

47. Potent and Selective Inhibition of SH3 Domains with Dirhodium Metalloinhibitors. Vohidov, F.; Knudsen, S.E.; Leonard, P.G.; Ohata, J.; Wheadon, M.J.; Popp, B.V.; Ladbury, J.E.; Ball, Z.T. Chem. Sci.20156, 4778-4783.

46. Molecular Recognition in Protein Modification with Rhodium Metallopeptides. Ball, Z.T. Curr. Opin. Chem. Biol.201525, 98-102.

45. Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Vohidov, F.; Coughlin, J. M.; Ball, Z.T. Angew. Chem. Intl. Ed.201554, 4587-4591.

44. Inhibiting Prolyl Isomerase Activity by Hybrid Organic-Inorganic Molecules Containing Rhodium(II) Fragments. Coughlin, J. M.; Kundu, R.; Cooper J.C.; Ball, Z.T. Bioorg. Med. Chem. Lett.201424, 5203-5206.

43. Stabilization and Functionalization of Single-Walled Carbon Nanotubes with Polyvinylpyrrolidone Copolymers for Applications in Aqueous Media.
Popp, B. V.; Miles, D. H.; Smith, J. A.; Fong, I. M.; Pasquali, M.; Ball, Z. T. J. Polym. Sci. Part A Polym. Chem.201453, 337-343.

42. Mixed Bioengineering-Chemical Synthesis Approach for the Efficient Preparation of Δ7-Dafachronic Acid. Kinzurik, M.I.; Hristov, L.V.; Matsuda, S.P.T.; Ball, Z.T. Org. Lett.201416, 2188-2191.

41. A Tripodal Peptide Ligand for Asymmetric Rh(II) Catalysis Highlights Unique Features of On-Bead Catalyst Development. Sambasivan, R.; Zheng, W.; Burya, S.J.; Popp, B.V.; Turro, C.; Clementi, C.; Ball, Z.T. Chem. Sci.20145, 1401-1407.

40. Studies of Asymmetric Styrene Cyclopropanation with a Rhodium(II) Metallopeptide Catalyst Developed with a High-Throughput Screen.
Sambasivan, R.; Ball, Z.T. Chirality201325, 493-497.

39. A Rhodium-Catalyzed Method for Serum-Stable Cysteine Modification. Kundu, R.; Ball, Z.T. ChemComm201349, 4166-4168.

38. Designing Enzyme-Like Catalysts: A Metallopeptide Case Study. Ball, Z.T. Accts. Chem. Res.201346, 560-570.

37. Determination of Orientational Isomerism in Rhodium(II) Metallopeptides by Pyrene Fluorescence. Sambasivan, R.; Ball, Z.T. Org. Biomol. Chem.201210, 8203-8206.

36. Screening Rhodium Metallopeptide Libraries on Bead: Asymmetric Cyclopropanation and a Solution to the Enantiomer Problem.
Sambasivan, R.; Ball, Z.T. Angew. Chem., Int. Ed.201251, 8568-8572.

35. Sequence-Specific Inhibition of a Designed Metallopeptide Catalyst. Popp, P.V.; Chen, Z.; Ball, Z. ChemComm 201248, 7492-7494.

34. Hybrid Organic-–Inorganic Inhibitors of a PDZ Interaction that Regulates the Endocytic Fate of CFTR.
Kundu, R.; Cushing, P.R.; Popp, B.V.; Zhao, Y; Madden, D.R.; Ball, Z.T. Angew. Chem., Int. Ed.201251, 7217-7220.

33. Catalytic Protein Modification with Dirhodium Metallopeptides: Specificity in Designed and Natural Systems.
Chen, Z.; Vohidov, F.; Coughlin, J.M.; Stagg, L.J.; Arold, S.T.; Ladbury, J.E.; Ball, Z.T. J. Am. Chem. Soc.2012134, 10138-10145.

32. Organometallics Roundtable 2011. Gladysz, J.A.; Ball, Z.T.; Bertrand, G, Blum, S.A.; Dong, V.M.; Dorta, R; Hahn, F.E. Humphrey, M.G.; Jones, W.D.; Klosin, J.; Manners, I.; Marks, T.J.; Mayer, J.M.; Rieger, B. Ritter, J.C.; Sattelberger, A.P.; Schomaker, J.M.; and Yam V.W. Organometallics2012, 1-18

31. A General Synthesis of Dirhodium Metallopeptides as MDM2 Ligands.
Zaykov, A.N.; Ball, Z.T. Chem. Commun.201147, 10927-10929.

30. Site-Specific Protein Modification with a Dirhodium Metallopeptide Catalyst. Chen, Z.; Popp, B. V.; Bovet, C. L.; Ball, Z. T. ACS Chem. Biol.20116, 920–925.

29. Kinetic and Stereoselectivity Effects of Phosphite Ligands in Dirhodium Catalysis. Zaykov, A.N.; Ball, Z.T. Tetrahedron201167, 4397–4401. Tetrahedron Young Investigator Award 2011: F. Dean Toste.

28. Proximity-Driven Metallopeptide Catalysis: Remarkable Side-Chain Scope Enables Modification of the Fos bZip Domain. Popp, B.V.; Ball, Z.T. Chem. Sci.20112, 690–695.

27. Metallopeptides for Asymmetric Dirhodium Catalysis.
Sambasivan, R.; Ball, Z.T. J. Am. Chem. Soc.2010132, 9289–9291.

26. Copper-Catalyzed Remote sp3 C–H Chlorination of Alkyl Hydroperoxides.
Kundu, R.; Ball, Z.T. Org. Lett.201012, 2460–2463.

25. Structure-Selective Modification of Aromatic Side Chains with Dirhodium Metallopeptide Catalysts. Popp, B.V.; Ball, Z.T. J. Am. Chem. Soc.2010132, 6660–6662.

24. Helix Induction by Dirhodium: Access to Biocompatible Metallopeptides with Defined Secondary Structure. Zaykov, A.N.; Popp, B.V.; Ball, Z.T. Chem. Eur. J.201016, 6651–6659.

23. Allylcopper Intermediates with N-Heterocyclic Carbene Ligands: Synthesis, Structure, and Catalysis. Russo, V.; Herron, J.R.; Ball, Z.T. Org. Lett.201012, 220–223.

22. Controlling Peptide Structure with Coordination Chemistry: Robust and Reversible Peptide-Dirhodium Ligation. Zaykov, A.N.; MacKenzie, K.R.; Ball, Z.T. Chem. Eur. J200915, 8961–8965.

21. Asymmetric Total Synthesis of Soraphen A: A Flexible Alkyne Strategy. Trost, B.M.; Sieber, J.D.; Qian, W.; Dhawan, R.; Ball, Z.T. Angew. Chem., Int. Ed.200948, 5478–5481.

 

20. Catalytic Organocopper Chemistry from Organosiloxane Reagents. Herron, J.R.; Russo, V.; Valente, E.J.; Ball, Z.T. Chem. Eur. J.200915, 8713–8716.

19. Synthesis and Isotopic Labeling of a Naturally Occurring Alkyl-Thiadiamondoid. Russo, V.; Allen, J.; Ball, Z.T. Chem. Commun. 200930, 595–596.

18. Synthesis and Reactivity of Functionalized Arylcopper Compounds by Transmetalation of Organosilanes. Herron, J.R.; Ball, Z.T. J. Am. Chem. Soc.2008130, 16486–16487.

17. Hydrosilylation of Alkynes and Related Reactions. Ball, Z.T. in Comprehensive Organometallic Chemistry, 3rd ed.; Mingos, M.; Crabtree, R., Eds. Elsevier Ltd.: London, 2007; Vol. 10, pp 789–814.

16. Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of P3HT:PCBM Solar Cells. Sivula, K.; Ball, Z.T.; Watanabe, N.; Fréchet, J.M.J. Adv. Mater. 2006, 18, 206.

15. Well-Defined, Living Polymers with High Fullerene Content and Their Use in Block Copolymers for Solution-Phase and Bulk Organization. Ball, Z.T.; Sivula, K.; Fréchet, J.M.J.Macromolecules 2006, 39, 70–72.

14. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc.2005, 127, 17644–17655.

13. Selective Synthesis of Functionalized, Tertiary Silanes by Diastereoselective Rearrangement-Addition. Trost, B.M.; Ball, Z.T.; Kang, E.-J. Org. Lett. 2005,7, 4911–4913.

12. An Alkyne Hydrosilylation-Oxidation Strategy for the Selective Installation of Oxygen Functionality. Trost, B.M.; Ball, Z.T.; Laemmerhold, K. M. J. Am. Chem. Soc. 2005, 127, 10028–10038.

11. Addition of Metalloid Hydrides to Alkynes: Hydrometallation with Boron, Silicon, and Tin. Trost, B.M.; Ball, Z.T. Synthesis 2005, 853–887.

10. Synthetic Stitching with Silicon: Geminal Alkylation-Hydroxylation of Alkynyl Carbonyl Compounds. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2004,126, 13942–13944.

9. A Theoretical Study on the Mechanism, Regiochemistry, and Stereochemistry of Hydrosilylation Catalyzed by Cationic Ruthenium Complexes. Chung, L. W.; Wu, Y.-D.; Trost, B.M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125, 11578–11582.

8. Regioselective Hydrosilylation of Propargylic Alcohols: An Aldol Surrogate. Trost, B. M.; Ball, Z. T.; Jöge, T. Angew. Chem., Int. Ed. 2003, 42, 3415–3418.

7. Ruthenium-Catalyzed Vinylsilane Synthesis and Cross-Coupling as a Selective Approach to Alkenes: Benzyldimethylsilyl as a Robust Vinylmetal Functionality. Trost, B.M.; Machacek, M. R.; Ball, Z.T. Org. Lett. 2003, 5, 1895–1898.

6. Intramolecular Endo-Dig Hydrosilylation Catalyzed by Ruthenium: Evidence for a New Mechanistic Pathway. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc.2003, 125, 30–31.

5. A Stereospecific Ruthenium-Catalyzed Allylic Alkylation. Trost, B.M.; Fraisse, P.L.; Ball, Z.T. Angew. Chem., Int. Ed. 2002, 41, 1059–1061.

4. A Chemoselective Reduction of Alkynes to (E)-Alkenes. Trost, B.M.; Ball, Z.T.; Jöge, T.  J. Am. Chem. Soc. 2002, 124, 7922–7923.

3. Markovnikov Alkyne Hydrosilylation Catalyzed by Ruthenium Complexes. Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2001, 123, 12726–12727.

2. A Synthetic Library of Cell-Permeable Molecules. Koide, K.; Finkelstein, J.M.; Ball, Z.; Verdine, G.L. J. Am. Chem. Soc. 2001, 123, 398–408.

1.  Design and Synthesis of Novel NK1/NK2 Dual Antagonists. Reichard, G.A.; Ball, Z.T.; Aslanian, R.; Anthes, J.C.; Shih, N.Y.; Piwinski, J.J. Bioorg. Med. Chem. Lett. 2000, 10, 2329–2332.